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Analysis of Pile Groups Subjected to Vertical and Horizontal Loads

H. G. PouLos, B.E., Pu.D., M.LLE.AuUsT. *

Summary—Three methods of analysing the behaviour of pile groups
are described, a well established statical method in which no account is
taken of pile-soil interaction, a method in which the pile group is replaced
by an equivalent structural bent and a method based on elastic theory in
which interaction between the piles is taken into account in a logical
manner. Comparisons between these three methods indicate that
consideration of inter-pile interaction in the soil leads to increased
maximum loads and moments in a group, although the deflections and
rotations may not differ greatly.

A parametric study is made of the deflections and rotation of typical
pile groups, using the elastic interaction method. The effects of pile
batter, increased pile spacing and increased pile stiffness in decreasing
the group deflections and rotation are examined.

SYMBOLS
A cross-sectional area of pile
Ae equivalent cross-sectional area of pile
Av, An, A 51
By, By, By submatrices in elastic interaction method
Cv,Cn, CyJ
Ey Young’s modulus of pile
E; Young’s modulus of soil
H horizontal load on pile group
H; horizontal load on pile ¢
1 settlement influence factor for single pile
1 moment of inertia of pile

horizontal displacement influence factors due to
horizontal load

horizontal displacement influence factors for moment

horizontal displacement influence factors for fixed
head pile

rotation influence facrors for horizontal load

rotation influence factors for moment (note: primed
values are for linearly increasing E; with depth)

I/)H, 1//11[

Toa, I'pm
Ipps I'pr

Loy I gn
Tgar, I’ gar

‘;" vs Lyns displacement and rotation factors for a group of piles
yary €1C

K pile stiffness factor

Kp pile flexibility factor (constant E;)

Ky pile flexibility factor (linearly varying Es)

L embedded length of pile

Ly equivalent total length of pile

L equivalent length of embedded portion of pile
M moment acting on pile group

M; moment at head of pile ¢

Ny, rate of increase of Young’s modulus with depth
R4 area ratio of pile

R; group settlement ratio

Rpir, Rpars Rpr group displacement ratios for horizontal load, mo-
ment and for fixed head piles

Rogn, Rowr group rotation ratios for horizontal load and moment

14 vertical load acting on group

Vi vertical load on pile s

d pile diameter

e unsupported length of pile above ground surface

n number of piles in group

s centre to centre spacing of piles

Se equivalent value of s for battered piles

X distanice from centre of gravity of pile group to pile
1, in the positive x direction

o interaction factor for vertical loading

interaction factors for horizontal displacement due
to horizontal load, moment and for fixed head pile

interaction factors for rotation due to horizontal
load and moment

B departure angle between two piles

ApHs LpALy PR

g, XgM

#The author is Reader, School of Civil Engineering, University of Sydney.

Vs Poisson’s ratio of soil

P single pile settlement

Po settlement of pile group

Ph horizontal movement of pile group

pa1s Pngys pavany Single pile vertical and horizontal movements due
to unit loads and moment

6 rotation
O, Oan1 single pile rotations due to unit load and moment
INTRODUCTION

A considerable number of methods have been developed for analysing
the behaviour of pile groups subjected to a general loading system.
Such methods may be classified into three categories:

(i) simple statical methods which ignore the presence of the soil
and consider the pile group as a purely structural system.

(ii) methods which reduce the pile group to a structural system but
which take some account of the effect of the soil by determining
equivalent free-standing lengths of the piles. The theory of
subgrade reaction is generally used to determine these equivalent
lengths. Typical of these methods are those described in
Francis (1964), Hrennikoff (1950), Kocsis (1968), Nair et al
(1969) and Priddle (1963). This type of approach will be termed
the “equivalent bent method”, following Kocsis (1968).

(iii) amethod in which the soil is assumed to be an elastic continuum

and inter-pile interaction can be considered.

The first two methods can only consider interaction of the piles
through the pile cap and not inter-pile interaction through the soil as
well. They therefore assume that, once the loads on any pile are known,
the deflections of that pile may be calculated from these loads alone.
The third method removes this limitation and allows consideration of
pile interaction through the soil; the deflections of a pile are therefore
not only a function of the loads on that pile but also of the loads on all
the piles in the group.

In this paper the above three approaches will be described and
comparisons will be presented between the results of these analyses for
two typical examples. In the “‘equivalent bent method”, a modified
method of determining equivalent free-standing lengths, based on elastic
theory rather than subgrade reaction theory, is detailed. Finally some
parametric solutions obtained from the third method will be presented
for typical pile groups, to illustrate the effects of various factors on group
behaviour.

SIMPLE STATICAL ANALYSIS

Traditional design methods have relied on the consideration of the
pile group as a purely structural system, ignoring the effect of the soil.
One such method which may be employed either graphically or analyti-
cally, is illustrated in Fig. 1. Considering, for simplicity, loads and
batter in the x, 2z plane only and piles having a pinned head, the steps in
this method are as follows

(a) the vertical pile loads are calcul ated as

14 M x;
Vi = o + 1
z ij

=1
where x;, x; are distance to the heads of piles ¢ and j, measured
from the centre of gravity of the group (i.e. the point about which

Zxg == 0).
=1

(b) if the solution is done graphically, the forces I and H are plotted
on a force polygon. The vertical pile forces V; from (1) are
then set off.

(¢) the force polygon is then completed by drawing lines parallel to
the pile directions. The axial force in each pile may thus be
obtained. There is then a residual horizontal force H., which
is assumed to be equally distributed between each pile in the
group.

(d) if desired the design of the group may be amended and the pile
batters adjusted to give H, = 0 i.e. no normal component of
load in the piles, so that each pile is axially loaded.

It should be noted that this method cannot take account of different
conditions of fixity at the pile head and always assumes zero moment at
the head of each pile.
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Fig. 1—Approximnate method for determination of group load distribution.

EQUIVALENT BENT METHOD
Principle of method

The principle of this method is illustrated in Fig. 2 for a planar
group. The actual group is shown in Fig. 2a and is acted up by vertical
and horizontal forces and a moment. The equivalent bent is shown in
Fig. 2b and consists of the pile cap supported by fixed-ended free-
standing columns of total equivalent lengths L,, L, and L; and equivalent
cross-sectional areas ey, Ay and A,y The equivalent area of a pile
is such that the axial deflection of the actual pile is equal to the axial
deflection of the equivalent column while the equivalent length is such
that equal lateral deflections or rotations are obtained. Once the
equivalent lengths and areas have been determined, the equivalent bent
may be analysed by standard structural analysis techniques to determine
the deflections, rotations and pile Ioads in the system.

Determination of equivalent bent

In existing methods which use the above approach, the equivalent
lengths of the piles are almost invariably determined from a subgrade
reaction analysis. The normal deflection (or rotation) of apile subjected
to normal load or moment is calculated and equated to the normal
deflection (or rotation) of a cantilever under the same load or moment,
from which the equivalent length can be determined (e.g. Francis (1964),
Kocsis (1968) and Nair et al (1969)). The equivalent area of each pile
has generally been determined by equating the axial deformation of the
equivalent cantilever to the free-standing column axial deformation of
the actual pile i.e. interaction with the soil has been ignored.

With the development of elastic solutions for vertically- and laterally-
Ioaded piles (Poulos (1971a); Poulos (1971b); Poulos & Mattes (1971);
Poulos (1972); and Poulos (unpublished)) it is now possible to make a
more satisfactory determination of the equivalent lengths and areas of
the piles in the equivalent bent method, taking rational account of the
effects of group action. This method of determination is described
below.

(a) Equivalent length of piles

The simplest basis for determining the equivalent cantilever length
of the embedded portion of a pile is to cquate the lateral deflection of the
pile at the ground line and of the equivalent cantilever at the ground
line, (alternatively, the corresponding rotations could be equated, but
Nair et al (1969) and Kocsis (1968) found only small differences in the
cquivalent length determined by the two approaches).

The equivalent length of the pile will depend on the boundary
condition at the pile head and on the type of loading assumed to act. A
number of cases have been considered, as illustrated in Fig. 3, and the
solutions derived for the equivalent cantilever lengths are summarised
in Table I.
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Fig. 2—DPrinciple of equivalent bent approach.
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TABLE 1
Expressions for equivalent cantilever lengths *
Case
(see Fig. 3) Equivalent Length
a Lo o LN 31},11K1\*R/;n
b Lesr == L\ 21puKnRpsr
¢ Lew = LY 12KpIpeRpr
d&e L. is solution to equation
LeN? M rLeN? M
({) = le*IZ(L) = 3K e(Rpndpir - ﬁL’I’A\IIQ/I[\I>
For case d, (Le == L¢y) M He
For case ¢, (L, = L¢y)
Ton Kp Roy 4 1,76(e/L)* 2
M HL [ ’ . He
Toar Ky Roag 1

*Above solutions arc for constant Ls.  For linearly increasing If, replace Ky by
K, and influence factors Iy ete. by [y ete.

Ty dpary Topy Ion and Ipag are displacement and rotation influence
factors (see symbols), and Ky is the pile flexibility factor, defined as

Kg =222 (2)
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where Epl, pile stiffness

E; Young’s modulus of the soil (assumed constant with depth)
L embedded length of pile.

Values of the influence factors have been obtained by Poulos (1971a).
The group effect has been taken into account approximately by applying
group displacement and rotation ratios Rpn, Rpm, Rpr, Ron, Rou 10
the single pile movement (Poulos, unpublished).

The above displacement and rotation ratios are determined by
superposition of appropriate “interaction factors” for laterally-loaded
piles, expressing the increase in deflection or rotation of a pile due to an
adjacent loaded pile. Values of these interaction factors and typical
values of the group displacement and rotation ratios, are given by Poulos
(1971b). Table I gives directly the equivalent lengths for constant Young’s
modulus E; with depth; corresponding solutions for linearly increasing
Young’s modulus with depth may be obtained by replacing the influence
factors I,# etc. by the appropriate values for a linearly increasing Young’s
modulus; denoted as I',u etc., and the pile stiffness factor Kr by K,
where

Eply

Ky = pip
¥ NpLs

©))

where N, rate of increase of Young’s modulus with depth.
Values of I’y etc. are given in Poulos (1973). Although the inter-
action factors in Poulos (1971b) apply strictly only to the case of constant
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Fig. 3—Eguivalent cantilevers for laterally loaded piles.

Young’s modulus with depth they may also be applied approximately to
the case of a linearly increasing modulus with depth, using a value of
Kr equal to K.

It should be noted that for case (e), the first term of the expression
for M represents the fixing moment developed at the pile head. If
fixity is not considered to be fully effective, a reduction factor, ranging
between 1 and 0, can be applied to this first term. In the limit, if no
fixity is developed, case (¢) then reduces to case (d).

Table II gives an example of the difference between the equivalent
lengths Leorr and L.um, assuming lateral load only, and moment only, to
act respectively. A single free-head pile only is considered so that
Rpm = Rpm = 1. For flexible piles the equivalent length L.y is
greater, but for rigid piles (Kr > 107%), L. becomes slightly greater.

The derivation of the equivalent bent as described above assumes
linear elastic soil response, but as pointed out by Poulos (1973), this may
not be a good assumption for lateral loading. An iterative approach
can be adopted if desired in which a non-linear load-deflection curve is
specified for each pile and the solution from the analysis of the equivalent
bent is recycled, using successively corrected values of the equivalent
cantilever length, until the load and deflection of each pile are compatible. *

TABLE II
Equivalent lengths L,y and L.t
Kr 10-¢ 103 10-* 103 102 10-*
Len/n 0406 .0818 157 293 551 1.123
Len/L 0251 0614 127 244 466 1.154
tLje = 50, v, = 0.5, single pile,
constant E, .

() Equivalent area of piles
For a fully embedded pile, the settlement of a pile in the group is
given approximately as

=R @)
PoEd ™

where I settlement influence factor
V applied axial load
R group settlement ratio.
Solutions for I have been presented by Poulos (1972) and Poulos (1974)
while values of R; have been given by Poulos and Mattes (1971) for a
wide range of groups.** Both I and the interaction factors are functions
of the pile stiffness factor K, where
EpR 4

K =
Es

&

where Ep Young’s modulus of pile
E; Young’s modulus of soil

R4 area ratio of pile which equals ratio of area of pile section to
gross cross-sectional area.
Although the solutions given are for constant E; with depth, they may be
applied approximately to other cases, provided that an average value of
E; along the length of the pile is used.

For estimating R, when the group contains battered piles, the battered
piles can, as a first approximation, be considered as vertical piles located
at the mid-point of the embedded part of the pile, and allowance can be
made for tensile loads in the piles (which, in effect, will decrease settle-
ment interaction between the piles).

The equivalent pile will have a length L. which will be determined as

described above (Table I) for lateral deflection equivalence. The axial
deflection of this equivalent pile is
Vi,
©)
P AL

*In the iterative procedure, it is also possible to successively correct the values of
the group displacement and rotation ratios, to allow for any effects of non-uniform load
distribution.

#*These values apply for groups which are loaded symmetricaily and in which all
pile loads are compressive, and may not be accurate for groups in which some of the
piles are in tension.
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where Ep Young’s modulus of pile
A equivalent area of pile
From (4) and (5),
L E;
T IR E,
For a pile having an unsupported length ¢ above the ground surface,
the axial deflection of this length must be added to that for the embedded

O]

e

portion. The corresponding expression for 4, is then
Le+ e
LA (8)
IRs Ey e
d Es A

The above expressions for 4. should apply for battered piles as well
as vertical piles since, as shown by Poulos and Madhav (1971), the axial
movement of a pile is not significantly influenced by its inclination.

ELASTIC INTERACTION ANALYSIS

Analyses of the behaviour of groups of vertical piles, based on elastic
theory, have been presented for axial loading (Poulos and Mattes, 1971)
and lateral loading (Poulos, 1971b).

These analyses have been based on the use of “interaction factors”,
which express the increase in movement of a pile due to an adjacent
loaded pile and which are functions of the pile spacing, relative stiffness
and geometry, and for horizontal loads, of the direction of loading. By
summation of the interaction factors for each pile in a group due to all
the other piles in the group, the displacement of each pile may be written
in terms of the loads on each pile in the group.

This approach can be extended to groups containing battered piles.
An earlier such extension was described by Poulos and Madhav (1971).
The present method contains some revisions of this earlier method. The
case considered first is a group in which all the piles are battered in the
same plane and on which the horizontal load acts in the same plane.
Considering two piles 7 and f in a group, it is assumed that an axial load
on pile j will cause a deflection of pile { which is in the axial direction of
pile j and equal to the axial deflection of pile j under this axial load
multiplied by an interaction factor for axial loading. Similarly it is
assumed that a normal load on pile j will cause a deflection of pile { which
is in the normal direction of pile § and equal to the normal deflection of
pile j under this normal load multiplied by an interaction factor for
normal loading. It will be assumed for simplicity that the interaction
factors for two battered piles are identical with those for vertical piles at
some equivalent spacing s.. Calculations suggest that for practical ranges
of pile flexibility, s. is approximately the centre-to-centre distance
between the piles one-third of the vertical depth of the pile for lateral
loading, and somewhat greater for axial loading. However, for con-
venience, the same equivalent spacing will be assumed for both axial and
lateral loading (see Fig. 4). It is further assumed, following the findings
of Poulos and Madhav (1971), that the interaction factor for axial dis-
placement due to axial Joad equals that for vertical displacement due to
vertical load on a vertical pile, and the rotation and normal displacement
interaction factors due to normal load and moment are identical with
those for rotation and horizontal displacement due to horizontal load and
moment.

On the basis of the above assumptions, the resulting equations for
vertical and horizontal displacement and rotation may be written in
matrix form as followsy

where the coefficients of the sub-matrices are as follows
Avy = payiy COS™Y; + pNQi#mi sinY;
By = payoti; 08 ¥ Sin s — pnQi% ks $IN 5 €OS ify
Cry = —pyms@puis sin ¢y
Abyy = parouy Sin s €OS ¢y — pyoi a1 €OS Yy Sin Y
Bhij = payoiy sin®dy + pngio,mij cos*y
Chis = pyaryearij €08 Y
Abi; = —Onyxgai; sin iy
Bosy; = HNsz'j €o8 l/lj
Coi5 = Oarygaais
par axial deflection of single pile due to unit axial load
py@1  normal deflection of single pile due to unit normal load
pnarn normal deflection of single pile due to unit moment
On1 rotation of single pile due to unit normal load

far1 rotation of single pile due to unit moment

The above unit deflections and rotations may be calculated from the
theoretical relationships (Poulos (1971a); Poulos (1971b) and Poulos and
Mattes (1971)) if values of the soil moduli can be estimated (Poulos (1973)
and Poulos (1974)). or if pile load test data is available, from the pile
deflections at the working loads. The interaction factors « are given in
Poulos and Mattes (1971) while values of the interaction factors ®pH >
®pars %gp are given in Poulos (1971b).

The submatrices Ay, By, etc., are of order n X » while the vectors,
V, pvetc., are of order n.  Equation (9) together with the three equations
expressing vertical and horizontal load equilibrium and moment equili-
brium, may be solved to obtain the 3» + 3 unknown vertical and hori-
zontal loads, moments, displacements and rotations, for the desired
boundary conditions at the pile heads.

A number of cases may be considered, including
(i) arigid pile cap rigidly attached to the piles, so that the rotations
and horizontal displacement of all piles are equal and the
vertical displacement of a pile is related to its position in the
group and the rotation.

(i) piles pinned to a rigid pile cap, which is similar to case (i)

except that the pile head moments are zero.

(iii) piles attached to a massive cap in which case horizontal and

vertical displacements are equal but all pile head rotations are
Zero.

(iv) piles attached to a relatively flexible pile cap so that each pile

is subjected to known loads and moments.

No account is taken in the above analysis of the horizontal shear and
rotational resistance between the cap and the soil although the analysis
could be extended to take these into account. Groups in which piles
are battered in different directions can be treated approximately by
resolving the horizontal load into two components and calculating the
in-line horizontal displacements due to each component, using, as the
length of a pile, its projected length in the plane of loading. The resul-
tant horizontal displacement can then be calculated from these dis-
placement components.

It should be emphasized that the fact that 3n -+ 3 equations are
required, rather than only 3 as in many methods based on subgrade
reaction theory, is a consequence of considering the interaction between
the piles rather than assuming that the displacements and rotation of a
pile are a function only of the loads and moments on that particular pile.
The consideration of inter-pile interaction in a logical manner in the

Av By Gy |4 Pt present analysis thus obviates the necessity to make approximate allow-
AnBLC 220 I ances for group effects as in the equivalent bent approach. To evaluate
h Bh L e R (9) (9 a computer program GUGEL (Groups Under GEneral Loading) has
AgByCy M X been written.
Case
{a) el — [ . S
L
3
Se T eS¢ |

Two battered piles

Vertical piles at
equivalent spacing

Fig. 4—Equvalent spacing of battered piles.
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COMPARISON BETWEEN METHODS OF PILE GROUP
ANALYSIS

To compare the three methods of analysis described in this paper,
two simple planar pile groups have been analysed, as shown in Fig. 5.
Each group has three piles, and in the first, all piles are vertical while in
the second, the outer piles are battered. In applying the equivalent
bent method, the equivalent length of each member has been taken as
the mean of L.y and L.y (Table I). A computer program (Harrison,
1973) has been used to evaluate the solution. For the elastic analysis,
the single pile vertical and horizontal responses and the interaction factors
have been obtained from the theoretical solutions in Poulos (1971a);
Poulos (1971b) and Poulos and Matrtes (1971).

V=600 kN
~ Ty M=300kNm
. = kN
- H‘ 200

V= 600kN

T M=300kNm
e H = 200 kN
RS |

—
12m 1~2m‘ 12m|j1-2m |
10m —~=0-4m ‘
1 2 3 2 t
oram 1
Es= 7000kPa LS sl
Ep= 21x10 kPa
Group A Group B

Fig. 5—DPile groups considered in comparison of methods.

The piles are assumed to be rigidly attached to a rigid cap in both
cases. The loads, moments and deflections from each method of analysis
are summarised in Table III.

The main points of interest are

(i) the vertical pile loads from the three methods agree quite
closely, although the elastic analysis tends to predict a higher
maximum load.

(i) there is a considerable discrepancy between the computed pile
moments from the equivalent bent and elastic analysis. The
simple statical analysis assumes zero moment in all piles.

(iii) the equivalent bent approach predicts a smaller rotation than
the elastic analysis and a larger vertical deflection of the leading
pile, but a smaller horizontal deflection.

TABLE III
Comparison of methods of group analysis
Simple Equivalent
Quantity statical bent Elastic
analysis analysis analysis
Group A V, kN 75 67.2 45.9
V, kN 200 200.0 169.6
V, kN 325 332.8 384.5
H, kN 66.7 66.6 74.9
H, kN 66.7 66.7 50.2
H, kN 66.7 66.6 74.9
M, kNm 0 —6.2 —39.6
M, kNm 0 —6.2 —27.1
M; kNm 0 —6.2 —39.6
pyy THID — 17.5 14.6
pn mm — 8.9 11.8
— .00581 00683
Group B V, kN 75 59.3 62.6
V, kN 200 200.3 169.1
Vy, kN 325 329.6 368.3
H;, kN 38.8 76.7 56.6
H, kN 52.0 75.5 42.1
H, kN 109.2 47.8 101.3
M, kNm 0 —~43.3 —36.0
M, kNm 0 —26.9 —21.3
M, kNm 0 --66.9 —10.0
ppy MM e 16.4 13.9
pn M e 8.2 9.5
— .00490 .00540

It should be noted that the computed rotation and horizontal deflec-
tion in the equivalent bent method are sensitive to the equivalent length
of the piles. For example, for Group A, if the equivalent length was
taken as Lem (= 1.96 m) instead of the mean of L.y and Loy (= 2.24 m),
the vertical deflection and rotation are 16.8 mm, 6.7 mm and .00521
compared with 17.5 mm, 8.9 mm and .00581 in Table III. On the
other hand, if L.y (= 2.52 m) is used, the corresponding values are
18.2 mum, 11.4 mm and .00639. The latter values of horizontal deflection
corresponds more closely to that from the elastic analysis and hence the
use of an equivalent pile length equal to L.y appears desirable.

A more detailed comparison of the computed deflection and rotation
under the individual components of load reveals that the vertical move-
ment due to vertical load given by the equivalent bent method and
clastic agree closely but that the computed rotation due to both horizontal
load and moment is considerably smaller in the equivalent bent method.
The equivalent bent method also gives a larger horizontal deflection due
to moment but a smaller horizontal deflection due to horizontal load.

The above comparisons therefore highlight the difficulty of attemp-
ting to characterise a complex pile-soil system by a structural frame.
Because it is a more rational nature, the elastic analysis should give more
reliable deflection predictions and is recommended. However, in cases

10 m where the piles in the group have a significant unsupported length above

the ground line or where the pile cap cannot be considered as rigid, the
equivalent bent approach may provide a more convenient means of
analysis.

PARAMETRIC STUDIES OF TYPICAL PILE GROUPS

In this Section, solutions for the displacement and rotation of some
typical pile groups are presented. The effects of the following factors
on group behaviour are examined: pile stiffness, pile batter, pile spacing
and pile configuration. The results are expressed in terms of dimension~
less influence factors and have been obtained from the elastic interaction
analysis.

Effect of pile stiffness and batter angle

The effects of pile stiffness and batter angle on the deflection and
rotation of a pile group are illustrated in Fig. 7 for a group of six 25
diameter piles in a deep soil layer, as shown in Fig. 6, for s = 3d. The
piles are assumed to be rigidly attached to a rigid pile cap, and the soil
is elastic and has a Young’s modulus which is constant with depth. Three
values of pile stiffness factor K are considered, K = 100 (corresponding
to concrete piles in a stiff soil), K = 1 000 (corresponding to concrete
piles in a medium-stiff soil) and K == 10 000 (corresponding to concrete
piles in a soft soil). For each value of K, the value of pile flexibility
factor Kx is related as follows
Kip

Kp == 'RflL'l (10)
where I, moment of inertia of pile section
R 4 area ratio, defined in equation
L pile length
The vertical and horizontal deflections, p, and ps, and the rotation
@ arc expressed as follows

RENSS EQIJ'I‘ “+ Ea?fvu i EEIUI (11)
V . '
P == Ezjfm = 'EEIHH + EE"IHM 12)
§ = "Lfgu + '—I;I““IgH -+ —%—101\1 (13)
E,dz? Ed® Esd?
where V' vertical load on group
H horizontal load on group
M moment on group

Iy, Ipm etc. are dimensionless deflection and rotation coefficients
evaluated from the analysis

L Young’s modulus of soil

For the symmetrical group considered here, Juv == Igr == 0, ie. the
horizontal deflection and rotation due to unit vertical load arc zero.

The coeflicients generally decrease (i.e. the deflections and rotation
decrease) as the batter angle of the piles increases. However, the factors
primarily influenced are the vertical deflection and rotation due to
horizontal load (Ivy and Igw), and the horizontal deflection due to
horizontal load and moment ([yy and Ima). The other coefficients are
virtually unaffected by pile batter. The pile stiffness factor K has a
significant effect on most coefficients.
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Fig. 6—Pile group considered in paramerric study.

Effect of pile spacing

The effect of pile spacing on the deflection and rotation coefficients
for a 6-pile group is shown in Fig. 8 for a batter angle of 15°. Almost
all coefficients decrease with increasing spacing, as would be anticipated.
The decrease is generally more marked for lower values of K.

Effect of pile configuration

In order to examine the effect of pile configuration on group rotations
and deflections, the six groups shown in Fig. 9 have been analysed.
Group A is the one shown in Fig. 6 while Group B is the same group
except that the centre two piles are removed. The other four groups
have different piles battered. In all cases, the batter angle of any
battered piles is 15°.

K =100
- — — K:z1000
— K=z 10000 ~._
10 01 R 01
S
0sFE~-———+= o} 1005 |~ — — — —|
IV\/ I\/H I\/M e e ]
e} | .01 J 0 ]
O 75 15 ] 75 15 ] 75 15

Batter Angle °

o) ol -1 -00s
gy Igh Iombe — — — =
{ | LT
_OOS !
0 7.5 15 o 75 s % 7.5 15

Batter Angle °

Fig. T—Effect of barter angle and relative pile stiffness on deflection and
rotation coefficients.

(6-pile group, L/d = 25, vs = 0.5, s/d = 3.)
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The deflection coefficients for each group are shown in Table IV.
The following observations may be made

(i) The behaviour of Group A is very similar to that of Group B,
ie. the centre piles in Group A have little influence on the
deflection and rotation coefficients.

(if) The advantages of Group D over Group C arise primarily from
the negative horizontal deflection and rotation developed under
vertical load.

(iii) Groups E and F behave similarly i.e. battering the centre piles
has little influence on the group deflection.

TABLE IV

Effect of pile configuration on
deflection and rotation coefficients *
(see Fig. 9 for details of pile groups)

Group, A B C D E F
Coefficient
Iyy .0528 .0566 0613 .0542 .0525 .0530
Ivw 00627 .00445] .0258 00300 .00311] .00152
Ivar .00491 00506 .00651| .00484| .00504| .00509
Iy 0 0 .0150 | —.0150 |—.00510| —.00810
Iy .0945 .0981 .1089 .1091 1026 21021
Irips 00036 —.00023| .00378{ .00378] .00186] .00188
1oy 4} 0 .00116| —.00116| —.00039 | —.00045
I6g 00209} .00148! .00378| .00378| .00286! .00286
Ionr 00164 .00169] .00188! .00188] .00171 00171

*Coefficients are for the leading piles of the group.

In order to gain a better appreciation of the relative merits of the
six groups considered, a numerical example has been taken in which
L =10m, d = 0.4m, E; = 7000 KN/m?, VV = 1200 kN, H = 400 kN
and M = 600 kNm. The resulting deflections and rotations, calculated
from (11) to (13) and the coefficients in Table IV, are shown in Table V.
It is evident that Group C is less satisfactory than the others. Overall,
Groups E and F deflect the least, although Group B is little inferior to
these Groups or to Group A, and would be preferred from the point of
view of economy, provided that vertical and lateral stability is adequate.

K = 100
— — — K =z1000
—-— Kz 10000
10 1 -01 [ -O1
™ .
\\\" ~
-051\\\— O\_ A REN -
e —~
Iyy Iyy IVM\-\. —_—
0 ] o1 1 0 !
3 6 9 3 8 9 3 6 9
s/d s/d s/d

\_\\ L ——
Iy Ik — I
{ |
o} -Q05
3 6 9 3 6 5 © 3 6 9
s/d s/d s/d
J 005 ‘004 ;
\
i
0 OF~T"—=- 002}
Tov Loy Iopp o>
| ! S=
--005 0
3 6 9 3 6 9 3 6 9
s/d s/d s/d

Fig. 8—Effect of pile spacing on deflection and rotation coefficients.
(6-pile group, L/d = 25, vs = 0.5, barter angle 4 = 15°.)
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Fig. 9—Groups considered in parametric study of effect of pile configuration.
(In all cases, pile spacing at cap = 3d,
Ljd = 25, K = 1000, vs = 0.5, batzer angle ¢ == 15°.)

TABLE V
Comparison of group performance
O,%
A B C D E 13

Quantity

po M 26.2 27.6 33.5 26.3 25.6 25.7

py Mmm 13.7 13.9 24.0 11.2 13.5 12.1

00204 | 00279 | .01727 | .01478 | .00289 | .00283

V = 1200 kN, H = 400 kN, M = 600 kNm
L = 10m, d = 0.4 m, E; = 7000 kN/m?

CONCLUSIONS

Comparisons between three approaches to the analysis of pile groups
under general loading systems have shown that similar vertical loads in
the piles are calculated by the three methods, but that horizontal loads
and moments may differ considerably, even to the extent of differing in
sign. These differences arise from the manner in which inter-pile
interaction is considered; the largest loads and moments appear to be
predicted from the elastic interaction analysis which takes the most
logical account of interaction, while the smallest loads are predicted by
the simple statical analysis, in which no account of interaction is taken.
Despite considerable differences in computed loads and moments, the
deflections and rotations given by the equivalent bent method and the
elastic interaction analysis are similar, although differences do exist in
certain components of the horizontal deflection and rotation. The
elastic interaction analysis appears to be the most logical method but in
cases where the piles in the group have a significant unsupported length
above the ground line or where the pile cap has finite flexibility, the
equivalent bent approach may be easier to apply.

Parametric studies of typical pile groups have shown that the com-
ponents of deflection and rotation most influenced by pile batter are the
vertical deflection due to horizontal load, the horizontal deflection due
to moment and the rotation due to horizontal load. The pile stiffness
most influences the deflections and rotation due to moment. As would
be expected, increasing the spacing between the piles leads to significant
decreases in most of the components of deflection and rotation. Finally,
the solutions indicate that the centre piles in a six-pile group serve little
useful purpose as far as deflections and rotations are concerned.

The elastic interaction analysis described in this paper assumes linear
response of the piles to load, but it is possible to introduce non-linearity
by carrying out an iterative analysis in which the unit deflections and
rotations are dependent on load level. A theoretical method of assessing
this dependence is described by Poulos (1972, 1973).  Calculations have
shown that the interaction factors may reasonably be assumed to be
independent of load level.
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