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ABSTRACT 
In light of a generic limiting force profile (LFP), closed-form solutions for laterally loaded free- and fixed- head 
piles in elastic-plastic media have been developed, and implemented by the first author into a spreadsheet 
program called GASLFP. The solutions offer an expeditious and sufficiently accurate prediction of response of 
lateral piles. Conversely, they allow input parameters to be deduced using measured pile response, as has been 
conducted for over 70 test (elastic) piles to date. Nevertheless, structure nonlinearity of pile body is an important 
issue at a large deflection.  

In this paper, a semi-empirical approach is established to capture pile response owing to structural nonlinearity.  
Expressions were provided for gaining cracking moment Mcr, flexural rigidity of cracked cross section EpIp, and 
ultimate bending moment Mult. Against measured response of two laterally loaded single piles, back-estimation 
indicates that (1) the parameters for elastic piles are quite consistent with the previous findings for piles in sand 
and clay, (2) The proposed variations of Mcr, EpIp and Mult for nonlinear piles provide good prediction of the pile 
response against measured data and (3) the modulus of rupture kr  of 16.7 (clay) and 33.0(sand) are close to those 
adopted for structural beams, although a very high kr of 62.7 (thus resulting in higher Mcr) for a pile in sand was 
deduced (shown elsewhere).  The use of the kr for beams would render pile deflections of the later pile to be 
significantly overestimated. The conclusions may be incorporated into design of laterally loaded piles. 

1 INTRODUCTION 
A number of approaches based on p-y concept were developed to capture the behaviour of piles subjected to 
lateral loads (McClelland and Focht 1958; Matlock 1970; Reese et al., 1974; Reese et al., 1975). The behaviour 
is generally dominated by the limiting force per unit length pu mobilized between the pile and soil, especially at 
high load levels (Randolph et al.,1988; Guo 2006). The profile of pu (also referred to as LFP) along the pile may 
be constructed using empirical or semi-empirical methods proposed previously (Brinch Hansen 1961; Broms 
1964; Matlock 1970; Reese et al,. 1974; Reese et al., 1975; Barton 1982; Guo 2006). In light of a generic LFP, 
elastic-plastic, closed-form (CF) solutions were developed for laterally loaded free- and fixed- head piles (Guo 
2006; Guo 2009), respectively. The solutions allow pile response to be predicted in an effective and efficient 
manner. Conversely, they enable the LFP to be deduced against measured pile response. They, however, are 
limited to elastic piles, and structure nonlinearity of pile body is an important issue at a large deflection (Nakai 
and Kishida 1982; Reese 1997; Huang et al., 2001; Ng et al., 2001; Zhang 2003).  

2 SOLUTIONS FOR LATERALLY LOADED PILES 
The problem of a laterally loaded free-head pile is schematically shown in Figure 1(a), with a lateral load Pt 
applied at an eccentricity, e above ground level (GL). The pile-head is free to rotate and translate with no 
constraint imposed at the pile head and along the effective pile length except for soil resistance. The pile-soil 
interaction is captured by a physical spring-slider model presented in Figure 1(b) with the lateral load Pt and a 
moment, Mt (= Pte) applied at the GL. The pile is described by deflection y (along the pile axis) at a depth x 
(below the origin at the GL). The interaction at each depth is modelled by a spring in series with a slider 
characterized by an idealized elastic-plastic p-y curve (see Figure 1c). The spring has a subgrade modulus, k (i.e. 
the slope of the p-y curve), and the slider provides a limiting force per unit length pu for the pile-soil interaction. 
The soil resistance normally reaches the pu (varying with depth) over a depth called slip depth, xp that increases 
with loading. Above the depth xp, the pile-soil interaction is in plastic state; whereas below the xp, it is in elastic 
state. The elastic state is modelled by the independent springs linked by a fictitious membrane with a constant 
fictitious tension, Np (i.e. incorporating the coupled effect among springs via a coupled load transfer model). In 
the plastic zone, however, the tension is neglected by taking Np as zero (employing an uncoupled load transfer 
model).  
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              (a)                                                  (b)                                                   (c) 
 
 

Figure 1:   Coupled load transfer analysis for a free-head pile (Guo, 2001a, 2006): (a) The problem addressed, 
(b) Coupled load transfer model and (c) Load transfer (p-y) curve. 

In the elastic state (x<xp), the subgrade modulus k and the fictitious tension, Np are obtained previously (Guo and 
Lee 2001). As shown in Table 1, they are mainly functions of Young’s modulus of an equivalent solid pile, Ep 
[=EpIp/(πd4/64)] and an equivalent soil shear modulus G* [=(1+0.75νs)Gs], in which EpIp and d = flexural 
rigidity, and outside diameter of the pile, respectively; νs and Gs = Poisson’s ratio and shear modulus of soil, 
respectively. In the plastic zone (x≥xp), the limiting force per unit length pu is well captured by (Guo 2001a) 

    
n

oLu xAp )( +α=        (1) 
where pu = limiting force per unit length [FL-1]; AL = suNgd1-n (clay), and γs

’Ngd2-n (sand), gradient of the LFP 
[FL-1-n]; αο = a constant to include the force at the GL [L];  x = depth below the GL [L]; n = a power to the sum of 
αο and x; Ng =  limiting force factor; su = undrained shear strength of cohesive soil [FL-2]; and γs

’ = effect unit 
weight of the soil [FL-3]. Guo (2006) shows  

• Gs = (0.25~0.62)N (MPa) ( sG = 0.5N MPa, note the bar denotes average and N = blow counts of SPT), 
αo = 0, n = 1.7 and Ng = (0.4~2.5)Kp

2 with respect to a uniform sand profile in which Kp = tan2 (45o + 
φs/2); and φs = effective friction angle of the soil  

• Gs = (25~315)su ( sG = 92.3su), n = 0.7, αο = 0.05~0.2 m ( oα = 0.11m), and Ng = 0.6~3.2( gN = 1.6) for 
a uniform clay profile. 

• The construction of LFP and use of an average Gs for layered soil profiles. 

The LFP described by Eq. (1) will be referred to as Guo LFP. It is provided in Table 1 along with Reese LFP for 
cohesionless soil, Matlock LFP for cohesive soil and Hansen LFP for any subsoil (using cohesion c and φs). 

The pile-soil interaction is governed by two differential equations that are dominated by the pu in the plastic zone 
(0≤x≤xp) and by the k and Np in elastic zone, respectively. They were resolved using boundary conditions and 
presented in closed-form expressions for pile deflection, slope, bending moment, shear force and soil resistance. 
The expressions are featured by reciprocal of characteristic length of the pile λ (= [k/(4EpIp)]0.25 with 
k/Gs  =2.4∼3.92), the slip depth xp and the parameters AL (or Ng), αο, and n (for the LFP). For instance, ignoring 
ground level resistance (by taking αο = 0) and using a uncoupled model (Np = 0), the pile deflection at GL yo is 
given by (Guo 2006) 
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where pp xx λ= , ee λ= , and tP  = Ptλ
1+n/AL. The solutions were entered into a spreadsheet program 

GASLFP. The solutions well captures the response of laterally loaded piles. Conversely, they allows the values 
of AL (or Ng), αο, n, and Gs to be deduced by matching the predicted with measured pile response of maximum 
bending moment (Mmax), pile deflection yo, and so forth under each load Pt. The solutions are developed for a 
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pile with a length L exceeding the critical value Lcr [= 1.05d(Ep/Gs)0.25], beyond which  any extra length of a pile 
will impose negligible influence on the pile response; otherwise the solutions for short rigid piles (Guo 2008) 
should be adopted. Note the Gs may be taken as the average sG  over a depth of 10d. GASLFP is used to 
conduct current investigation. 

Table 1   Typical limiting force profiles 

Name Expressions 

Matlock LFP 1  ,/2 ,5.0' ==+= nNdsdN gousg αγ     (Matlock 1970) 
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where Kj(γ) is modified Bessel function of second kind of jth order (j = 0, 1) (Guo and Lee 2001) 
. The factor γ is for L> Lcr+xp and given by 25.0*

1 )( −= GEk pγ ; with k1 = 1.0 for a lateral load (e 
= 0) applied at point O (sliding level), and k1 = 2.0 for a pure moment. The governing equations 
were resolved  (Guo 2001a; Guo 2006) for free-head case, and a pile length exceeding the sum 
of Lcr + xp. 

 

3 MODELLING STRUCTURE NONLINEARITY 

3.1 CRACKING MOMENT MCR 
Tensile strength is only a small fraction of compressive strength for a concrete pile. Tensile cracks may be 
developed at a large deflection, once the tensile stress at the extreme fibre arrives at the modulus of rupture fr. 
Section analysis of a beam allows the modulus fr to be correlated with cracking moment, Mcr (upon which cracks 
are initiated) by: 
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where kr = 19.7~31.5 for a normal weight concrete beam (ACI. 1993), and 16.7~62.7 for lateral piles (shown 
elsewhere); yr = distance from centroidal axis of gross section to extreme fibres in tension; Ig = moment of 
inertia of gross section about centroidal axis (neglecting reinforcements); fc

′ = characteristic value of the 
compressive strength of concrete, in kPa. The fc

′ and Ec may be empirically correlated by Ec = 151,000(fc
′)0.5 

(kPa) (ACI. 1993). 

3.2 VARIATION OF EFFECTIVE FLEXURAL RIGIDITY EPIP WITH MMAX 

Under a lateral load, cracks may be induced in a pile at the depth of Mmax if the Mmax exceeds the cracking 
moment Mcr, although other regions may be still intact. This will render the flexural rigidity of the pile EpIp 
reduce from the elastic EcIg (rewritten as EI) to a new effective bending rigidity EcIe (rewritten as EpIp) (ACI. 
1993) until a final (minimum) cracked rigidity (EI)cr (= EcIcr). This variation may be expressed by 

    cr
crcr

pp EI
M
M

EI
M
M

IE )(1
3

max

3

max ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=    (4) 

Equation (4) is used to deduce Young’s modulus of a pile, Ep [= EcIe/(πd4/64), or EcIe/(bh3/12)] from EpIp of the 
entire pile, regardless of the position and scale of cracks. This should model the worst scenario as the cracks 
should generally be confined to a limited zone; otherwise much more complicated procedure is required (Chiou 
et al., 2009). More importantly, replacing Ep in the elastic-pile solutions with this new Ep, nonlinear pile 
response is readily captured using the same solutions for elastic piles. 

3.3 MULT AND ICR FOR RECTANGULAR AND CIRCULAR CROSS SECTIONS 
The ultimate bending moment Mult and Icr may be obtained by bending theory via moment-curvature method that 
involves stress-strain relationships of concrete and reinforcement (Hsu 1993). For instance, Reese (1997) 
provided the Mult and Icr for closely-spaced-cracks using a Hognestaad parabolic stress-strain relationship for 
concrete and an elastic-perfectly plastic stress-strain relationship for steel. The cracks may initially be spaced at 
some distance and the concrete stress-strain relationship depends on strength, rate and duration of loading etc. A 
rational flexural theory for reinforced concrete is thus yet to be developed (Nilson et al., 2004). Pragmatically, 
limit state design underpinned by simplified rectangular stress block method (referred to as RSB hereafter) 
(Whitney 1937) has been widely adopted to calculate the Mult and Icr (BSI 1985; EC2 1992; ACI. 1993).  

A pile may generally fail by crushing of the concrete in the outmost compression fibre as tension failure of steel 
rebar is rare. The compression failure may occur at a strain εcu of 0.0035 (BSI 1985; EC2 1992; Nilson et al., 
2004), or 0.003 (ACI. 1993). The tension failure strain εsu varies from 10 to 40%  (Lui 1997), and was taken as 
0.015 (Reese 1997). The accuracy of εsu has limited impact on analysing lateral piles showing compressive 
failure. 

Figure 2 shows typical cracked cross-sections, with four rows of rebars, and of a circular pile (Figure 2a), and a 
rectangular pile (Figure 2b), respectively. With a linear strain distribution (Figure 2c), the compressive stress in 
concrete is simplified as a rectangular stress block (Figure 2d) characterised by those highlighted in Table 2, 
including the intensity of the stress, σc,  the depth a of the stress block, and the stress induced in a rebar in the ith 
row, σsi . The stresses allow axial force bending moment in either section to be gained as.  
     xxsxcA

PPPdA =+=∫ σ      (5) 

     nscA
MMMdAx =+=∫ 1σ      (6) 

where A = area of cross-section excluding the concrete in tension; σ  = normal stress in concrete (σc ) or rebars 
(σsi); Pxc = σcAc, axial load taken by the concrete; Ac = area of concrete in compression; Pxs = ∑σsiAsi, axial load 
shared by the rebars; Asi = total area of rebars in the ith row; Px = imposed axial load; x1 = distance from neutral 
axis; Mc and Ms = moments about the neutral axis induced by normal stress in the concrete and rebars, 
respectively; and Mn = nominal or calculated ultimate moment. Generally, the values of Pxc, Pxs and Ms can be 
readily obtained. The Mc may be estimated using Equations (7) and (8) developed herein for a rectangular and a 
circular cross-section, respectively. 
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where b = width of a rectangular pile. 
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    (a)                                                  (b)                                                (c)                                   (d) 
 
Note fc

′’
 = 0.85 fc

′; α1 = 0.85; β1 = 0.85-0.05(fc
′-27.6)/6.9 and β1 ≥ 0.65; θ  = curvature; t = cover thickness; As1 σs1, As2 σs2, As3 

σs3, As4 σs4  are axial forces of the first to fourth row reinforcing bars and the rows are numbered consecutively from the 
extreme tensile bars to the compression side, in which σsi = steel stress of a rebar in the ith row and Asi = total area of rebars in 
the i-th row. 

Figure 2:  Simplified rectangular stress block for ultimate bending moment calculation:  a) Circular section, 
(b) Rectangular section (c) Strain, and (d) Stress. 

Table 2   Stress block for calculating Mult 

Items Description 

σc  The intensity of the stress, σc is α1fc
′’with α1 = 0.85, and fc

′’= 0.85fc
′.  

a 

The depth a of the stress block is given by a =β1c, where β1 = 0.85-0.05(fc
′-27.6)/6.9 and β1 ≥ 0.65, and 

c = distance from the outmost compression fibre to neutral axis: 
c = 0.0035 /θ   if concrete fails, otherwise 
c = 2r – t - ds /2 – 0.015/θ concerning the debound (tension) failure.  
Note: The diameter of ‘2r’ for a circular pile should be replaced with h for a rectangular pile; r = radius 
of a circular pile, θ = curvature at the limit state, ds = diameter of rebars, and t = cover thickness (Fig. 
2b).  

σsi 

The stress induced in a rebar in i-th row, σsi is calculated according to level of rebar strain εsi 

(compared to yield strain εsy): σsi =φ rfy (yield stress) if εsi >εsy otherwise, σsi = εsiEs.  
Note: The ith row of rebars are counted from the farthest tensile row towards the compressive side (see 
Figure 2d); εsy=φ rfy/Es, Es = Young’s modulus of reinforcement, generally taken as 2×108 kPa; and 
φr=0.9, reinforcement reduction factor for tension and flexure. 

 
Computing Mult and Icr may follow the steps highlighted in Table 3. First, the nominal ultimate bending moment 
Mn of Mc + Ms is calculated using Equation (6); Second, the ultimate bending moment, Mult is calculated as φMn 
(φ = a reduction factor) (see Table 3); and finally the cracked flexural rigidity, EcIcr is obtained by  
     θ/ultcrc MIE =      (9) 
The aforementioned calculation has been entered into a simple spreadsheet program that operates in EXCELTM. 
The program offers consistent results against the ACI, and the AS3600 methods (not shown herein), and was 
thus used in this study. 

 

 

 

 

 

 

Table 3:  Calculation of Mmax and Icr using RSB method 

c a=β1c 

h 

b 

r 

As1 σs1 

εcu =0.0035 

εs1 ≤ 0.015 

θ  

As2 σs2 

As4 σs4 

As3 σs3 

t ds 

''
1 cc fασ =
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Steps Actions 
1 Select	
  an	
  initial	
  curvature	
  θ	
  (see	
  Figure	
  2)	
  of	
  0.0035/r;	
  	
  
2 Calculate	
  position	
  of	
  neutral	
  axis	
  by	
  evaluating	
  c and a	
  =	
  β1c;	
  	
  
3  Compute	
  the	
  axial	
  forces	
  in	
  concrete	
  Pxc	
  and	
  rebars	
  Pxs;	
  	
  

4 Find	
  squash	
  load	
  capacity	
  Pxu	
  by:	
  Pxu	
  =	
  fc′Ac	
  +	
  Es(fc′/Ec)Ac,	
  where	
  Ac,	
  As	
  =	
  total	
  areas	
  of	
  
concrete	
  and	
  rebars,	
  respectively;	
  

5 
If	
  Pxc	
  +	
  Pxs-­‐Pxu	
  >10-­‐4Pxu,	
  increase	
  θ	
  by	
  a	
  designated	
  increment,	
  say	
  0.0035/1000r.	
  Otherwise,	
  
if	
  Pxc	
  +	
  Pxs	
  -­‐	
  Pxu	
  <	
  -­‐10-­‐4Pxu,	
  reduce	
  the	
  θ	
  by	
  the	
  said	
  amount.	
  Repeat	
  steps	
  (1)~(4)	
  until	
  the	
  
convergence	
  is	
  achieved.	
  	
  	
  

6 Estimate	
  the	
  nominal	
  ultimate	
  bending	
  moment	
  of	
  Mc	
  +	
  Ms	
  by	
  Eq.	
  (6);	
  and	
  finally	
  	
  

7 

Compute	
  the	
  ultimate	
  bending	
  moment,	
  Mult	
  using	
   )( scult MMM += φ ,	
  in	
  which	
  	
  	
  
φ	
  =	
  ultimate	
  moment	
  reduction	
  factor,	
  catering	
  for	
  difference	
  between	
  actual	
  and	
  nominal	
  
pile	
  dimension,	
  rebar	
  cage	
  off-­‐position,	
  and	
  assumptions	
  and	
  	
  simplifications	
  inherent	
  in	
  the	
  
analysis.	
  The	
  φ 	
  is	
  given	
  by	
  (Nilson	
  et	
  al.,	
  2004)	
  
• φ	
  =	
  0.493+83.3εs1,	
  and	
  0.65	
  ≤	
  φ	
  ≤	
  0.9,	
  for	
  laterally	
  tied	
  rebar	
  cage;	
  	
  
• φ	
  =	
  0.567+66.7εs1,	
  and	
  0.70	
  ≤	
  φ	
  ≤	
  0.9,	
  for	
  spirally	
  reinforced	
  rebar	
  cage.	
  	
  

8 Compute the cracked flexural rigidity, EcIcr by θ/ultcrc MIE =  (16) 

Notes 
As an example, the calculations for the pile in sand are as follows: β = 0.65, θ  = 0.0164 (m-1),          
c = 214 mm, εs1 =0.00586, a = 139 mm, Pxc = 2.8651MN, Pxs= -2.8654MN, Mc = 0.38 MNm,  
Ms = 1.72 MNm, φ = 0.9, Mn = 2.1 MNm, and Mult = 1.89 MNm 

 

3.4 MODELLING STRUCTURE NONLINEARITY 
As mentioned earlier, the analysis of piles with structural nonlinearity essentially employs the same solutions as 
those for a linear (elastic) pile, but with varying bending rigidity EpIp beyond cracking load. The analysis for an 
elastic pile was elaborated previously (Guo, 2006), and recaptured in Table 4. As shown later, the values of Mmax 
gained are negligibly different between elastic pile (EI) and cracked pile, but for an extremely high EI (shown 
elsewhere). The new EpIp for each Mmax (or load) may thus be calculated using Equation (4), together with Mcr 
from Equation (3), and (EI)cr (via Equation (9) from rectangular block stress method (RBS).  

The Mcr and EpIp may be deduced using measured pile response, as with the parameters Gs and LFP for linear 
piles, using GASLFP. A measured Mcr should correspond to initial point of deviation of the predicted Pt–yo 
curve (using EI) from the measured curve. Beyond the Mcr, the EpIp is adjusted to minimise the derivation 
between the two curves, until it reduces to the final cracked rigidity (EI)cr at maximum failure load. A 
‘measured’ kr may be deduced using Equation (3) and the measured Mcr (such as kr = 16.7~62.7 mentioned 
earlier), and the obtained EpIp for various Mmax together with Mcr and (EI)cr allow Equation (4) to be justified. 

The impact of reduced rigidity (owing to cracking) on a fictitious pile response is illustrated using GSLFP 
prediction. The pile with d = 0.373 m, L = 15.2 m, and EI = 80.0 MNm2 was installed in the sand having φs = 
35o, γsʹ′ = 9.9 kN/m3, Gs = 11.2 MPa, and νs = 0.3. The LFP was described by αo = 0, n = 1.6 and Ng = 0.55Kp

2.  
Under a head load Pt of 400 kN, the predicted profiles of deflection y, bending moment M, slope θ, shear force 
V, and on-pile force per unit length p are illustrated in Figure 3 for EI = 80.0 MNm2 and EpIp= 8.0 MNm2. The 
figures indicate the reduction in rigidity leads to (1) significant increase in the pile deflection and slope (all 
depth), and some increases in the local maximum V and p, and in the slip depth xp; however, (2) little alteration 
in the bending moment profile. The results legitimatize the back-estimation of EpIp using measured yo, and the 
Mmax predicted from elastic-pile in Equation (4). 

 

 

 

 

 

 



STRUCTURE NONLINEARITY AND RESPONSE OF LATERALLY LOADED PILES                       GUO  & ZHU 

 Australian Geomechanics Vol 46 No 3 September 2011 47 

(a)
10

8

6

4

2

0
0 100 200 300

 

 x/
d

 

 pu (kN/m)

 Reese LFP
 Guo LFP

    (b)
15

10

5

0
0.0 0.5 1.0 1.5

 x 
(m

)

 y (m)

  EI
 EpIp

 

(c)
15

10

5

0
0 200 400 600 800 1000

 x
 (m

)

 

 M(kN-m)

 EI
 EpIp

    (d)
15

10

5

0
-0.5 -0.4 -0.3 -0.2 -0.1 0.0

 x(
m)

 θ(rad/m)

 EI
 EpIp

 

(e)
15

10

5

0
-750 -500 -250 0 250 500

 

 V (kN)

 x
(m

)

 EpIp
 EI

      (f) 15

12

9

6

3

0
-600 -300 0 300 600

4.4 m

xp =3.6 m

 

 p (kN/m)

  x
(m

)

 EI
 EpIp

 

Figure 3:  Effect of concrete cracking on pile response: (a) LFPs, (b) deflection (y) profile, (c) bending moment 
(M) profile, (d) slope (θ) profile, (e) shear force (V) profile and (f) soil reaction (p) profile. 
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Table 4:  Procedure for analysis of nonlinear piles 
Steps Actions 

Elastic pile 

1 Input pile properties including: d, L, EpIp, Ip, and e, and calculate Ep by Ep = EpIp/(πd4/64) or = 
EpIp/(bh3/12) 

2 

Determine parameters αο, n and Ng for LFP based on Eq. (1). 
For sand, average values of γs, φ are estimated over a depth of 5d; and average shear modulus Gs 
over a depth of 10d.  
For clay, an average value of su is estimated over a depth of 5d, and shear modulus Gs are 
correlated to an average su over a depth of 10d.   
For a layered soil profile with shear strength increases or decreases dramatically, n may be higher 
or lower than 0.7, respectively 

3 Calculate critical length Lcr, if the value of Lcr < 5d for sand (or < 10d for clay), the average shear 
modulus is reselected to repeat the calculation of 1 and 2. 

4 Compute k and Np 

Nonlinear pile 

1 Calculate the Mmax and pile deflection yo at each load level for elastic pile (EI) 

2 Determine Mcr using Eq. (3) 

3 Calculate the critical load Pcr by taking Mmax in step 2 as the Mcr. 

4 Compute the Mult and (EI)cr using the rectangular block stress method (RBS), in terms of pile 
size, rebar strength and its layout, and concrete strength 

5 Calculate bending rigidity EpIp for each load level above the Pcr, by substituting values of EI, 
(EI)cr, Mcr and a series of Mmax into Eq. (4), 

6 Compute pile deflection using new EpIp and program GASLFP for each load. 
 

4 ANALYSIS ON TWO NONLINEAR PILES  
Investigation was conducted into four piles tested in sand and two piles in clay that manifested structure 
nonlinearity. Owing to space limitation, only two piles are presented herein, for which (1) shear modulus is taken 
as an average value over a depth of 10d; (2) Poisson’s ratio is assumed to be 0.3; and (3) γsʹ′ andφ s are taken as 
average values over a depth of 5d. 

4.1 A PILE TESTED IN SAND 
A prestressed pile, P7 was instrumented with strain gauges and inclinometers, and tested individually under a 
lateral load applied near the GL (e = 0) (Huang et al., 2001). The soil profile at the site consisted of fine sand 
(SM) or silt (ML), and occasional silty clay. The ground water is located 1 m below the GL. Over a depth of 15 
m, the average SPT blow count, N  was 16.9; the friction angle φs was 32.6º (Teng 1962), and the effective unit 
weight, '

sγ  was 10 kN/m3.  

The pipe pile (P7) was infilled with concrete, reinforced with 19@19 rebars, 38@9 high strength steel wires that 
have a concrete cover of 30 mm. It was 34.0 m long, 0.8 m O.D., and 0.56 m I.D. The strength values are (1) fy 
(outer pipe pile) = 1226 MPa, fy (infilled material) = 471 MPa, fc

′ (prestressed concrete) = 78.5 MPa, and fc
′ 

(infilled concrete) = 20.6 MPa, respectively; and (2) An equivalent yield strength of the composite cross-section 
of 67.74 MPa (= (Ep/151000)2), as Ep = 3.93×107 kPa determined from EI =0.79 GN-m2. The parameters allow 
the following to be calculated: (1) Mcr = 277.4 ~ 443.9 kNm using kr = 19.1~31.5, yr = 0.4 m and Equation (3). 
And (2) Mult = 1.89 MN-m, and (EI)cr/EI = 0.146, using the RSB method (see Table 3). 

The elastic-pile analysis was based on (1) n = 1.7, αο = 0 and Ng = 1.0Kp
2 = 11.13, as deduced from the DMT 

tests shown in Figure 4 (Huang et al., 2001), and (2) Gs = 10.8 MPa (= 0.64N ) (Guo 2006). The predicted 
deflection yo is illustrated in Figure 4(b), which agrees with the measured data until Pt of 284 kN, at which Mcr = 
464.7 kNm. This prediction provides (1) A slightly higher kr of 33.0; and (2) A Mult of 1.82 ~ 2.0 MN-m (as 
indicated by sharp increase in the measured yo in Figure. 4(b) at Pt = 804 kN to 863 kN, which agrees well with 
1.89 MN-m gained using the RBS method. 
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Table 5   Analysis of Pile P7 using elastic pile, and deduced EpIp 

Pt (kN) Measured yo 
(mm) 

Using elastic-pile EI 
EpIp/EI 

Using cracked  EpIp 

Mmax  
(kNm) yo (mm) xp/d Mmax  

(kNm) yo (mm) xp/d 

284 11.6 464.7 10.5 1.85 1 464.7 10.5 1.85 
361 21.8 631.4 14.5 2.13 0.486 619.4 21.4 2.37 
498 46.8 959.9 23.1 2.56 0.243 937.4 56.3 3.10 
566 60.6 1138.0 28.0 2.75 0.204 1118.2 79.7 3.39 
666 88.9 1411.8 35.8 3.02 0.176 1396.1 118.8 3.75 
732 106.0 1603.5 41.4 3.18 0.167 1590.2 147.6 3.97 
804 171.8 1818.0 47.9 3.35 0.160 1807.2 180.8 4.18 

826.2 218.2 1886.0 50.0 3.40 0.159 1875.9 191.6 4.24 
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Figure 4:  Comparison between measured (Huang et al., 2001) and predicted response of pile P7: (a) LFPs,  
(b) Pt-yo curves, (3) Pt~Mmax curves, and (4) EpIp/EI ~ Mmax. 
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With (EI)cr of 0.1152 GN-m2 (as per RSB method), Mcr of 464.7 kNm, and Mult of 1.89 MN-m (an average of 
1.82~2.0 MN-m), the EpIp was estimated using Equation (4) for each Mmax (gained using EI). This EpIp allows 
new yo and Mmax to be estimated, which are presented in Figures 4(b) and 4(c), respectively. The measured 
deflection was overestimated by ~28%, indicating the accuracy of the estimated (EI)cr and Equation (4). 

4.2 A PILE TESTED IN CLAY 
Pile D was tested at a site (Nakai and Kishida 1982) with an undrained shear strength su = 35+0.75x (kPa, x in m 
< 20 m), and an average us  over 15.48 m (= 10d) of 43 kPa. The lateral load was applied at 0.5 m above the GL. 
The pile had L = 30 m, d = 1.548 m, EI = 16.68 GN-m2, Ep = 5.92×107 kPa, and fc

′ = 153.7 MPa [≈ 
(Ep/151000)2]. The Mcr was estimated as 2.81~ 4.50 MN-m (using kr = 19.7~31.5, yr = 0.774 m and Equation (3), 
which exceeds 1.33 MNm by 2.0~3.4 times. The ultimate bending moment Mult was not estimated, without the 
reinforcement information. 
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Figure 5: Comparison between calculated and measured (Nakai & Kishida, 1982) response of Pile D: 
(a) LFPs, (b) Pt-yo curves, (c) Pt~Mmax curves, and (d) EpIp/EI ~ Mmax. 
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The elastic pile reaction was simulated using n = 0.7, αο = 0.1 and Ng = 2.0 (see LFP in Figure 5a), and k = 
3.13Gs with Gs = 5.62 MPa (=130.8su) (Kishida and Nakai 1977). In particular, Figure 5(a) demonstrates that the 
LFP within 5d is close to Hansen’s LFP gained using c = 8 kPa, φs = 10°, but is far below the Matlock’s LFP. 
The predicted pile deflection compares well with the observed one until Pt  of 690 kN (see Figure 5b). The 
cracking Mcr (Mmax at Pt = 690 kN) was deduced as 2.38 MN-m, and kr as 16.7 using a higher Ec (= Ep) rather 
than the concrete modulus. 
The EpIp was deduced using the measured deflection yo (see Figure 5b), which in turn offers the bending moment 
Mmax, as plotted in Figure 5(c). For instance, the maximum load Pt of 1289 kN incurs EpIp = 5.0 GN-m2                    
(= 0.3EI), yo = 90.1 mm, Mmax = 5.57 MNm, and xp = 6.09 m (= 3.93d). The evolution of cracking renders yo 
increase by 118.2%, Mmax reduce by 1.24%, and xp increase by 29.3%, which resemble those noted for piles in 
sand (not shown herein).  
Using Mmax and EpIp at Pt = 1289kN, (EI)cr was calculated to be 4.01 GN-m2 using Equation (4), and (EI)cr/EI = 
0.241. Substituting (EI)cr and Mmax into Eq. (4), EpIp was calculated, which in turn allows the deflection yo to be 
computed. This deflection designated as ‘EpIp–Equation (4)’ compares well with measured one (see Figure 5b).  
Equation (4) is validated for this case. 

5 CONCLUSIONS 
A semi-empirical approach is established to capture pile response owing to structural nonlinearity.  Expressions 
were provided for gaining cracking moment Mcr, flexural rigidity of cracked cross section EpIp, and ultimate 
bending moment Mult. Against measured response of two laterally loaded single piles, back-estimation indicates 
that (1) the parameters for elastic piles are quite consistent with the previous findings by Guo (2006). (2) The 
proposed Mcr, EpIp and Mult provide good prediction of the pile response against measured data and (3) the 
modulus of rupture kr  of 16.7 (clay) and 33.0 (sand) are close to those adopted for structural beams, although a 
very high kr of 62.7 (thus resulting in higher Mcr) for a pile in sand was deduced (shown elsewhere).  The use of 
the kr for beams would render pile deflections of the later pile to be significantly overestimated. The conclusions 
may be incorporated into design of laterally loaded piles. 
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APPENDIX 1 – NOTATION 
The following symbols have been adopted in this paper. 
a   height of stress block; 
AL   gradient of the LFP [FL-1-n]; 
b   width of a rectangular cross section of a pile; 
c   distance from extreme compression fibre to neutral axis at a section in which Mult occurs; 
d   pile diameter; 
e      eccentricity of loading above groundline (GL); 
Ec   modulus of elasticity of concrete; 
EcIg   initial flexural rigidity of the pile; 
Ep   equivalent Young’s modulus of pile; 

cf ʹ′    characteristic value of compressive strength of the concrete; 
''
cf   design value of concrete compressive strength; 

fy   yield strength of reinforcement; 
G*   = (1+0.75νs) equivalent shear modulus of soil; 
Gs   shear modulus of soil; 
h   depth of a rectangular cross section of a pile; 
Ig   moment of inertia of gross section of the pile; 
Ie   effective moment of inertia of the pile after cracking; 
Icr   moment of inertia of cracked section; 
k   subgrade modulus of a spring between pile and soil; 
k1  a constant of load transfer factor; 
kr   a constant for concrete rupture; 
Lcr   critical length of a pile; 
Mcr   cracking moment; 
M (Mmax)  bending moment in the pile (maximum M); 
Mn   nominal or calculated ultimate moment; 
Mt   moment applied at the pile at the GL; 
Ms and Mc   moments about the neutral axis induced by normal stress in the rebars and concrete, respectively; 
n   power of the sum of α0 and x; 
N   blow count of Standard Penetration Tests (SPT) test; 
Ng   a gradient correlated compressive strength with the limiting pile – soil pressure at ground level; 
Np   fictitious tension of a fictitious membrane linking the springs around the pile; 
Pt    lateral load applied at pile head; 
Pxs and Pxs   axial loads distributed on the rebars and concrete, respectively; 
Px    total axial load;  
pu   limiting force per unit length [FL-1]; 
r    pile radius; 
su   undrained shear strength [FL-2]; 
V shear force in a pile; 
x   depth below ground level [L];  
xp   slip depth; 
y (yo)  pile deflection (y at ground level); 
yr   distance from the centroidal axis of gross section to the extreme fibre in tension; 
αο  a constant to include the force at ground level [L];   
α1   ratio of average concrete stress; 
β1   ratio of stress block depth; 
φ   ultimate moment reduction factor; 
φs angle of friction of soil; 
γ   load transfer factor; 

γs (
'
sγ )  unit weight of the soil (effective γs); 

θ    the curvature. 
λ     reciprocal of characteristic length of the pile; 
σsi, σc normal stress in the rebars and concrete, respectively; 
νs   Poisson’s ratio of soil;. 


