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ABSTRACT 
Predictions of performance are at the core of geotechnical engineering design. Predictions based solely on 
deterministic analyses suffer from unquantifiable uncertainties and the implied absoluteness of the prediction. 
On the other hand, probabilistic estimates suffer from being vague, which is unsettling to most geotechnical 
engineers. Combining deterministic and probabilistic analyses offers synergies that are best utilized only if the 
geotechnical engineer appreciates the relative role of each type of analysis. This paper describes an overview of 
the hierarchy of probability-based analyses in geotechnical engineering predictions. The aim is to provide 
geotechnical engineers with a framework that integrates analytical and probabilistic analyses. The available 
probabilistic analyses, their level of complexity, applicability and limitations are considered, in order to enable 
the geotechnical engineer to choose correctly the optimum analysis that best suits their specific project and 
circumstances. 

1 INTRODUCTION 
There is increasing application of probabilistic methods and reliability analyses covering all aspects of 
geotechnical engineering, from site investigation planning to detail design. The complexities of the methods 
utilised and the effort involved, additional to traditional deterministic analyses, can be onerous. Duncan (2000) 
presented a method for incorporating reliability calculations in routine geotechnical engineering practice, and 
demonstrated the potential insight that probabilistic analysis offers the geotechnical engineer into the 
uncertainties inherent in their proposed design. Essentially, the variability of the prediction, whether 
serviceability-related or safety-related, is evaluated. This is then used to estimate the probability of occurrence of 
unsatisfactory conditions. 

It is widely recognised that many geotechnical practitioners lack confidence in reliability-based analysis and 
design to substitute these for their conventional deterministic approaches (e.g. Focht and Focht, 2001). This is 
commonly attributed to unfamiliar jargon and methodology as well as the added effort necessary to implement 
probabilistic analyses. It is likely that the lack of a hierarchical approach and descriptions of alternative 
probabilistic approaches, also contribute to this state of confusion. Furthermore, there are other issues such as: 
the absence of mapping of different classes of probabilistic analyses and the associated complexity of methods of 
analysis and design; lack of appreciation of the links between extent of soil investigations and the evaluation of 
variability of site conditions and the absence of guidance on prediction method and the required complexity of 
prediction sought. All these issues tend to alienate many practitioners and clients. This leaves the practitioners 
and clients to rely on proven methods and techniques gained from experience using deterministic analyses, even 
in situations where probability-type analyses would be more appropriate. For example, the evaluation of the 
stability of a long highway embankment would be more meaningful when expressed in terms of the probability 
of failure, rather than the lowest factor of safety, because of the variability of ground conditions and the quality 
control during embankment construction. 

Many geotechnical practitioners appreciate the need to undertake complex deterministic analyses where 
necessary. Simple models require simple tests, while sophisticated models necessitate sophisticated tests. Table 
1, based on Jamiolkowski et al. (1985), clarifies the need to match the features of a chosen constitutive model to 
the determination of soil properties through soil testing. Kulhawy (2000) pointed out that although non-parallel 
links are possible, these really have to involve re-calibration and empiricism, say Category II model and 
Category III properties.  

It is necessary to view and select probabilistic analyses within a comparable framework in order to match the 
complexity of the problem, the chosen analysis, and the sourcing of input statistical data. This paper addresses 
this aspect, including the development of combinations of analytical and probabilistic analyses. 

2 PROBABILISTIC ANALYSES 
Probabilistic analyses are indispensable when the geotechnical engineer wishes to explicitly evaluate the 
significance of variations of loads, ground conditions and soil properties, and to quantify the risks associated 
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with particular design options. Compared to loads, the variance of soil properties is considerably larger. 
Furthermore, the method chosen to analyse the field problem, being an idealisation of reality, introduces model 
uncertainty that often results in the prediction being different from field observation. Baecher and Christian 
(2003) described the commonly used probabilistic analyses for dealing with different sources of uncertainty as: 
first order second moment (FOSM), second-order-second-moment (SOSM), point estimation (PE) and Monte 
Carlo simulation (MCS).  

Table 1: Categories of analytical methods for geotechnical modelling (after Jamiolkowski et al. 1985) 

Category Main feature of models Determination of soil properties 
I Sophisticated constitutive models, including 

nonlinearity, elasto-plasticity, time and stress-
dependency, and perhaps anisotropy 

Numerous sophisticated laboratory tests, 
coupled with a range of in situ tests to assess 
in situ variables directly (such as stress) 

II Advanced constitutive models, including 
incremental elasto-plasticity or nonlinear 
elasticity 

Conventional laboratory and in situ tests, 
coupled with a few special tests to define 
model limits, etc. 

III Simple linear models, such as isotropic elastic 
continuum (possibly layered) or empirical 
model 

Conventional laboratory or in situ tests 

With respect to soil statistical data, it is imperative to consider the key aspects of soil spatial variability, the 
implications of limited information, and local averaging. Furthermore, whether based on geotechnical site 
investigations or using results based on simulated random fields, two aspects of sampling require careful 
consideration. The first is the limited extent of sampling, in particular not performing enough measurements and 
therefore the impossibility of directly determining spatial variance and the scale of fluctuation.  

The second limitation is related to scale effects because any type of measurement involves a finite volume of soil 
that differs from the volume used in modelling the soil mass. The volume of soil samples used in laboratory 
testing, or the disturbed soil zone in the case of field tests such as the vane shear and cone penetration test, is 
several orders of magnitude smaller than the volume of soil affected by a shallow or deep foundation. 
Accordingly, the variance determined from such measurements can be treated as providing point variance. A 
variance function is then necessary to relate how much the variance of a spatial average is reduced (due to 
averaging over the soil thickness L, and data correlation expressed by the scale of fluctuation, θ), when 
compared to the variance of the point values. Vanmarcke (1983) presented a number of variance functions 
including triangular, exponential, second-order autoregressive, and the squared exponential correlation functions. 
Based on the commonly used exponential form for the correlation function, the resulting variance function, γ(L) 
is: 
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Where: L is the lag distance and θ is the scale of fluctuation.  

The relationship between the variance function and the relative averaged size is shown in Figure 1. For a ratio 
(L/θ) of one order of magnitude (typical when the profile is divided into sub-layers), the appropriate variance is 
approximately one tenth of the point variance, whereas for two orders of magnitude (soil profile idealised as a 
single equivalent homogeneous layer), the variance is one percent of the point variance. Therefore, over-
prediction of variance effects is unavoidable unless local average effects are explicitly considered. 
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Figure 1: Variance reduction due to spatial averaging 



PROBABILISTIC TECHNIQUES IN GEOTECHNICAL MODELLING – WHICH ONE SHOULD YOU USE? 
                                                                   KAGGWA & KUO 

 Australian Geomechanics Vol 46 No 3 September 2011 23 

3 CATEGORIES OF PROBABILISTIC ANALYSES 
Using the categorisation of analytical methods described by Jamiolkowski et al. (1985), it is possible to group 
probabilistic analyses into three main categories, namely (i) simple methods that rely on statistical analyses, (ii) 
advanced analyses that account for the spatial, random variability of soil parameters within soil layers and (iii) 
sophisticated analyses that take into account the spatial variability of the soil parameters or soil response. The 
categories, their main features and the associated probability parameters are shown in Table 2.  

Table 2: Proposed categories of probabilistic analyses 

Category Probabilistic 
analysis 

Main features of probabilistic 
analysis and its implementation Required probabilistic parameters 

I 

Sophisticated 
analysis 

Sophisticated probabilistic analyses, 
including spatial variability of soil 
response (SVSR) or individual 
parameters (SVP) and their covariance, 
anisotropy, using MCS. 

Upper and lower limits of soil non-
linear response; mean, variance and 
scale of fluctuation; probability 
density function; spatial correlation 
structure. 

II 

Advanced 
analysis 

Advanced probabilistic analyses that 
treat soil medium as spatially variable 
using spatial parameter variability 
(SPV), analysis captures second-order 
effects using SOSM, or MCS.  

Mean and variance of variable soil 
parameters, probability density 
function, scale of fluctuation, and 
choice of spatial variance reduction 
function. 

III 

Basic analysis Simple variance evaluation of 
homogeneous soil medium, using 
FOSM, PE, etc. 

Statistical analysis of databases to 
obtain soil mean and variance, 
normal distribution function is 
adequate. 

3.1 BASIC (CATEGORY III) PROBABILISTIC ANALYSES 
In the simplest type of probabilistic analyses (Category III), the soil is idealised as a uniform homogeneous 
material and characterised by the mean and variance of each soil property and adoption of the normal 
distribution function. We can refer to such soil model as a single-element-model (SEM). The reduction of a soil 
profile to SEM requires the determination of weighted averages of the soil parameters. The effects of soil 
variance can be evaluated using standard statistical procedures, such as first order second moment (FOSM) 
techniques, and a normal probability distribution function is usually adequate. However, the choice of the 
variance to be used in Category III analyses is not a trivial matter. Where a lot of data is available, the variance 
of the mean (σ2/N) should be used, where the point variance (σ2) of the soil property is determined from N 
measurements. Alternatively, published data on variability may be used, such as those reported by Phoon and 
Kulhawy (1999) for many soil properties and parameters. However, these require correction (i) to ensure that 
only inherent soil variability is considered, and (ii) for variance reduction due to local averaging to be explicitly 
incorporated in the analysis. Results from different types of tests require correction to a standard test type with 
prior removal of systemic errors and variability due to the type of test. Separation of soil parameter variability 
into operator, test type and interpretation, and inherent variability involves collection of a lot of data and 
statistical analysis of the data. 

3.2 ADVANCED (CATEGORY II) PROBABILISTIC ANALYSES 
In Category II probabilistic analyses, the soil spatial variability is included explicitly. The probability 
distribution function, mean, standard deviation and scale of fluctuation, for each soil layer are required. Each soil 
layer is subdivided into elements (or sub-regions) with each element assigned a single value of the soil parameter 
in such a way as to satisfy the statistical parameters and the spatial correlation model. The Local Average 
Subdivision (LAS) algorithm described by Fenton and Vanmarcke (1990) has been used to generate accurate 
random fields based on point statistical moments, probability density function, and scale of fluctuation. It has 
been used in many theoretical studies of foundation, slope stability and seepage problems, using numerical 
methods and Monte Carlo simulation. The analyses can also be implemented in stochastic finite element 
(SFEM). 

The subdivisions can be implemented in one, two or three dimensions. In one-dimensional modelling, vertical 
variability is modelled, neglecting any variations in the lateral directions, in conjunction with analytic solutions 
or finite layer analyses (e.g. Kaggwa et al. 2002). For two-dimensional problems (axi-symmetric or plane-
strain), variations in one of the directions are neglected, together with stochastic finite element method (SFEM) 
or traditional finite element or finite difference methods and Monte Carlo simulation. For example, the stochastic 
finite element method was applied to pile settlement problems by Phoon et al. (1990) and Quek et al. (1992), 
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whereas Fenton and Griffiths (2002) and Griffiths et al. (2002) used MCS to the settlement of shallow 
foundations. In three-dimensional problems, variations in all spatial directions are included, for example Fenton 
and Griffiths (2005) and Goldsworthy et al. (2007). 

3.3 SOPHISTICATED (CATEGORY I) PROBABILISTIC ANALYSES 
Category I probabilistic analyses represent sophisticated techniques that combine statistical parameters and 
correlation structure. For implementation on a specific project, they require extensive and sophisticated testing of 
the soil in order to determine the correlation structure of soil parameters, including scale of fluctuation, auto-
correlation function, or cross correlation functions among related soil properties. In complex problems including 
nonlinearity, soil yielding, and anisotropy, only sophisticated constitutive models are appropriate. Probabilistic 
analyses of these complex problems can be undertaken by considering the variability of the soil response and 
Monte Carlo simulation. This approach was proposed by Kaggwa (2000) and is briefly described. 

3.4 EXAMPLE OF APPLICATION OF SPATIAL VARIABILITY OF SOIL RESPONSE (SVSR) IN 
SOPHISTICATED CONSTITUTIVE MODELS 

Sophisticated constitutive models that combine nonlinearity, yielding, and anisotropy, involve many parameters, 
with two or more parameters being used to model a particular facet of soil behaviour. There is physical meaning 
attributable to some parameters (primary parameters) although other parameters (secondary parameters) are 
sometimes used for calibration of the constitutive model. More importantly, values of some parameters depend 
on the values of other soil parameters. If the parameters are treated as independent variables, there is potential 
for violation of the state boundary or failure criteria. Treating the model parameters as correlated variables adds 
further complexities because of the requirement when assigning values to the model parameters to ensure that 
there is no violation of the state boundary or failure criteria.  

Soil variability is commonly treated in terms of individual parameter variability. For example linear elastic 
settlements are evaluated by considering the variability of soil compressibility, using Young’s modulus of the 
soil, E, as the random variable. Since the variations in Young’s modulus represent variations of the slope of the 
stress-strain relationship, what is modelled is the variability of the stress-strain soil response. Accordingly, this 
idea of modelling the variability of soil response can be extended to sophisticated constitutive models if a set of 
values of parameters is treated as the variable, rather than the individual soil parameters. Let us consider the 
simple linear elastic-plastic soil model defined by five parameters, namely stiffness parameters E’ and ν’, shear 
strength parameters c’ and φ’, and dilation angle ϕ. The set Ri(E’, ν’, c’, φ’, ϕ ) represents one combination of 
values of soil parameters that define the elasto-plastic soil response and different Ri represent different 
responses. When treated as a random variable, Ri can be used to model the spatially variable soil profile. 

The overall procedure for a Monte Carlo simulation using finite element analysis is as follows. 

1. Choose an appropriate constitutive model taking into account the complexity of field conditions, 
available soil data and the complexity of the required solution. It is possible to use different constitutive 
models for different materials, for example sand and clay layers, embankment fill and concrete. 

2. For each soil layer or material, decide on the limits of the values of soil parameters. Check these limits 
in view of the common tendency to underestimate variability. Carry out numerical predictions using 
these bounds and check that the outputs bracket the range of expected behaviour. 

3. Determine the most probable (expected) values of the model parameters and check that these values 
represent the median response. Again check that the output is as expected.  

4. Decide on the number of sets ns, covering the range of responses, preferably not less than seven and not 
greater than fifteen, unless there are good reasons to the contrary.  

5. Determine the values of the constitutive model parameters for each set. A simple scalar can be used to 
assign values of primary parameters of the ns sets. Check that each set satisfies the constitutive model 
and yields reasonable solutions when used in a deterministic analysis.  

6. Using a normal probability distribution function and a coefficient of variation appropriate to the site 
conditions, generate a spatially variable finite element mesh, with each element assigned a material set 
number that falls within the range assigned to the soil layer. For Category II analysis, it is adequate for 
the response sets to be assigned to the elements as random numbers, whereas for Category I 
probabilistic analyses directly incorporate spatial correlation in the assignment of the response set to 
each element. 

7. Carry out a deterministic prediction and obtain the desired outputs at the pre-selected locations. 
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8. Repeat steps 6 and 7 in a Monte Carlo simulation using a minimum of 2000 repetitions unless there are 
strong reasons to use fewer realisations. 

9. Analyse the results of the Monte Carlo simulation to determine the mean and standard deviation of the 
output and the probability distribution function. 

10. Make decisions about the response, based on the statistical information obtained from Step 9. 

4 INTEGRATION OF ANALYTICAL AND PROBABILISTIC ANALYSES 
In order for probabilistic techniques to be readily integrated in geotechnical engineering predictions, it is 
necessary to relate them directly to analytical methods and to view both as complimentary. The categories of 
probabilistic techniques, presented in Table 2, require linkage to the available methods of analysis presented in 
Table 1. There are many possible combinations of analytical and probabilistic methods, as shown in matrix form 
in Table 3. In extreme cases, the solution is obtained by putting all the effort in one type of analysis, either the 
deterministic-based analysis or database-based statistical analysis. This is particularly true of many numerical 
software programs that use sophisticated constitutive models, where a lot of effort is put into calibration of the 
numerical analysis, with little consideration of the statistical and spatial variability of the input parameters. 
Where parametric studies are undertaken, these are used to indicate the sensitivity of the solution to changes in 
parameter values. 

The other extreme is the analysis of available data, using model tests or field measurements of say settlement of 
foundations on sand or liquefaction potential. Foundation geometry or earthquake-induced rock motion, 
combined with available field conditions obtained from some type of in situ or laboratory tests, are then used to 
develop charts, or equations, that characterise various levels of performance. Artificial neural network (ANN) 
applications, particularly Bayesian and fuzzy ANNs fall in the category of sophisticated probabilistic methods 
with no analytical treatment of the field problem. 

The implementation of probabilistic analyses in complex geotechnical models has been hindered by a number of 
factors. These include many soil parameters in a constitutive model, inter-dependency of several parameters, 
difficulties in assigning correlations among model parameters and lack of feel for the geotechnical problem. 
Accordingly, most predictions that involve probabilistic methods fall in Categories II and III combined with 
analyses in Categories I and II. 

Table 3: Methodologies that combine analytical methods and probabilistic analyses for geotechnical predictions 

Category I 
(sophisticated) 

II 
(advanced) 

III 
(basic) 

Category I (sophisticated) COMPLEX -
COMBINED Analysis-intensive Deterministic 

Category II (advanced) Probability- 
intensive 

ADVANCED - 
BALANCED Analysis-driven 

Category III (simple) Probabilistic Probability-driven BASIC-SIMPLE 

Semi-empirical methodologies use statistical methods to varying levels of complexity. These applications can be 
as simple as graphical representation of data and the determination of limits between acceptable, questionable 
and unacceptable design conditions. Regression analyses, where the scattered data is replaced by single 
equations have inherent limitations. The development of fuzzy artificial neural networks (ANNs) can be 
considered as examples of sophisticated probabilistic methods and empiricism. 

The elements of the matrix in Table 3 represent methodologies where either the analytical method or 
probabilistic analysis drives the solution, as well as where complex analytical methods or probabilistic analyses 
are employed. Methodologies based on advanced analytical methods that employ simple probabilistic techniques 
are termed analysis-driven, whereas those that involve advanced probabilistic analyses but use simple analytical 
methods are termed probability-driven. Methodologies that rely on complex analytical methods and the use of 
advanced probabilistic techniques are termed analysis-intensive, whereas methodologies that rely on complex 
probabilistic analyses and the use of advanced analytical methods are termed probability-intensive. Those 
methodologies where analytical methods and probabilistic analyses of equal complexity are employed are 
represented by the diagonal elements in Table 3. These reflect equal complexity of the analytical method and 
probabilistic analysis and their features are summarised Table 4. 

It can be seen from Table 4 that Complex-combined analyses are intensive in all respects. Because multiple 
outputs are sought, this necessitates sophisticated soil testing to obtain soil parameters and their variability that 
are then input into numerical analyses that involve complex constitutive models. Monte Carlo simulation is then 
utilised to obtain probabilistic data on the outputs. In Advanced-balanced methods, that would be appropriate for 
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most predictions where a single output is sought, an equation or straight-forward series of analysis steps are 
combined with simple probabilistic analyses to obtain information on the variance of the predicted response.  For 
semi-empirical analyses, a line of best fit is obtained using least squares analysis and the residuals used to 
represent the scatter of the data from the expected behaviour or confidence limits. 

Table 4: Hierarchy of probabilistic approaches and linkage to deterministic analyses 

CLASS FEATURES OF  
ANALYTICAL METHOD 

FEATURES OF  
PROBABILISTIC TECHNIQUE 

 Soil model Parameter 
evaluation 

Output from 
analysis Soil variability Evaluation of 

variability 

I 
(Complex-
combined) 

Quite sophisticated 
constitutive 
models, including 
nonlinearity, 
elasto-plasticity, 
time and stress-
dependency, and 
perhaps anisotropy 
e.g. Cam Clay, 
stress-dependent 
elasto-plasticity 

Multiple 
parameters, some 
parameters depend 
on others. 
Numerous 
sophisticated 
laboratory tests, 
coupled with a 
range of in situ 
tests to assess in 
situ variables 
directly (e.g. stress) 

Multiple 
outputs 
required, e.g. 
Pore pressure, 
vertical 
settlement, 
horizontal 
deflections, 
time effects for 
embankment 
and deep 
excavations. 

Spatial 
variability 
within soil 
layers, 
correlation 
structure, 
anisotropy, and 
MSC 
methodology 
for solution 

Exhaustive 
evaluation of 
statistical 
parameters, 
probability 
density 
function, 
anisotropic 
correlation 
structure 

II 
(Advanced- 
balanced) 

Advanced 
constitutive 
models, including 
incremental elasto-
plasticity or 
nonlinear elasticity 

A few key 
parameters. 
Conventional 
laboratory and in 
situ tests, coupled 
with a few special 
tests to define 
model limits, etc 

Single 
response, e.g. 
vertical 
settlement of 
footing, 
bearing 
capacity of 
footing 

Spatial 
variability, 
variance 
reduction to 
account for 
correlation 
structure 

Conventional 
statistical 
analysis of soil 
data 

III 
(Basic-
simple) 

Simple linear 
models, such as 
isotropic elastic 
continuum (or 
layered). 

One or two average 
parameters. 
Conventional 
laboratory or in situ 
tests 

Single 
response, e.g. 
elastic 
settlement of 
footing 

Averaged value 
of parameter 
over soil 
profile, or 
characteristic 
value 

Conventional 
statistical 
analysis of soil 
data to account 
for variance of 
averages 

5 EXAMPLE – PROBABILISTIC BEARING CAPACITY OF STRIP FOOTING 
ON PURELY COHESIVE SOIL 

The Prandtl (1921) solution of bearing capacity factor Nc of a strip footing, width B, on the surface of a 
homogeneous purely cohesive soil with cohesion c, is widely used in geotechnical engineering. Because it is 
underpinned by theory, it can be considered to fall in Category II analytical method. The solution can be written 
as (Meyerhof, 1963): 

cu cNcq =+= )2( π                                                                      (2) 
In order to account for non-homogeneity, the soil can be modelled as a variable material with the level of 
complexity depending on the importance of the structure and the accuracy of the estimate being sought. 
Referring to Table 2, Category III analyses would involve statistical treatment of the variations of the averaged 
value of c for the homogeneous soil layer. Adoption of FOSM solution technique can show that the mean value 
of bearing capacity µqu is given by: 

ccq N
u

µµ =                                                                                     (3) 

The standard deviation of bearing capacity 
uqσ  is given by: 

cqu
σσ =                                                                                           (4) 

With respect to Category II in Table 2, evaluation of the mean and standard deviation of the bearing capacity 
requires consideration of the spatial variability of cu, and involves subdivision of the soil medium into sub-layers 
or elements. A first approximation may assume an uncorrelated structure, in which case the values of c assigned 
to each element would only take into account the mean, standard deviation, and probability density function 
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appropriate to the soil layer. Analyses using Monte Carlo simulation of the shear strength values and numerical 
solution of the FEM problem would then be undertaken. Table 5 shows a summary of the results of probabilistic 
studies. 

Table 5: Summary of results of probabilistic studies 

Category Method used in analysis Mean of Nc 
(µNc/µ c) 

Variance of Nc 
(COVNc/COVc) 

I 
Random field simulation with 
correlation length (θ), analysis 
using MCS 

Decreases with increasing 
COVc but 1≈

cNCOV for 
COVc less than 20% 

Tends towards 0.1 for low 
values of θ/B 

Tends towards 1 for large θ/B 

II Random spatial variability, 
analysis using MCS 1 Variable, depends on relative 

size of adopted elements 

III First Order Second Moment 
(single layer) 1 1 

For Categories I analyses, this requires considerations of the spatial variability (by selecting an appropriate value 
of the correlation length θ) in order to simulate the correlation structure of the random values. That is, the mean 
µc, coefficient of variation COVc, correlation length θ/B and probability density function are required inputs.  

There are very few instances reported in the literature where complex numerical analyses have been combined 
with complex probabilistic applications. One example of such study was undertaken by Kuo (2008). The 
Category I analyses of a strip footing at the surface of a cohesive soil layer used stochastic random field and 
finite element limit analysis of lower and upper bound bearing capacity. Kuo (2008) adopted a log-normal 
probability density function and exponential variance reduction function to simulate random field. The results 
highlight the impact of complexity of probabilistic analysis on bearing capacity factor and are used here as a 
benchmark for the lower-category analyses. The significance of soil variability with respect to the expected 
value, and the variance, of the bearing capacity factor are shown in Figures 2 and 3. The common assumption of 
constant expected value is reasonable as long as the COV of cohesion is less than 20%. 
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Figure 2: Effect of correlation length on expected value of bearing capacity factor Nc 
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Figure 3: Effect of correlation length on variability of bearing capacity factor Nc 



PROBABILISTIC TECHNIQUES IN GEOTECHNICAL MODELLING – WHICH ONE SHOULD YOU USE? 
                                                                   KAGGWA & KUO 

 Australian Geomechanics Vol 46 No 3 September 2011 28 

However, the correlation length has a major effect on the variability of the bearing capacity factor as shown in 
Figure 3. Low values of correlation length (which imply random variations over short distances) result in low 
variability of the bearing capacity factor and can be explained by the variance reduction effects. For a given strip 
footing width, the small correlation length compared to its width results in a reduction of the variance. For large 
correlation lengths relative to the footing width, the variance tends to a homogeneous, single variance problem.  

6 SUMMARY AND CONCLUSIONS 
The application of probabilistic analyses in routine geotechnical engineering predictions requires careful 
consideration of the methodology to follow, in particular linking the analytical method and the probabilistic 
technique to be employed. The choices available have been described, highlighting potential biases towards 
either analytical method or probabilistic technique.  These have the potential to offer the engineer a strategy for 
checking the errors inherent in the simpler categories of methodologies. 
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